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RECIPROCAL PERFECT AND ASYMPTOTICALLY
PERFECT PERIODIC RADAR WAVEFORMS

AND THEIR APERIODIC PROPERTIES

I. INTRODUCTION

Modern radars generally incorporate pulse compression waveforms to avoid transmitting a pulse
having a large peak power. Pulse compression waveforms enable one to transmit a long pulse to
obtain sufficient energy on a target for detection and to simultaneously obtain the desired range reso-
lution. This is achieved by modifying the time-bandwidth product (TB) of the transmitted waveform.
A larger transmit time duration T allows sufficient energy on the target for detection, while 1/B
determines the resolution of the compressed pulse if no mismatch occurs. The desired signal
bandwidth is generally obtained by modulating the signal's phase or frequency while maintaining a
constant maximum pulse amplitude. This is illustrated by the linear chirp signal, pseudorandom
phase codes, and polyphase pulse compression waveforms. A desirable property of the compressed
pulse is that it have low sidelobes to prevent a weak target from being masked in the time sidelobes
of a nearby stronger target. It is generally also desired that the compressed pulse does not signifi-
cantly degrade when the return signal has been Doppler shifted because of target motion.

Digitally coded radar waveforms can be employed to obtain much larger values of TB (pulse
compression ratios) than are feasible with analog dispersive delay lines. In addition, as it is demon-
strated in the following sections, periodic radar waveforms can be defined that have zero sidelobes or
almost zero sidelobes. Figure 1 illustrates a digitally coded periodic radar waveform. The complex
values of a0, a1 , ... , aN-1 make up the code word in a given pulse repetition interval (PRI), where
N is the length of the code word. This code word is repeated in succeeding PRIs.

AMPLITUDE

PRI

__ I _000 11111 __ _

ao a1 a 2 aN- ao al a2 -1 a0 a1 a2 aN 1 a0 a1 a2

Fig. 1 - Digitally encoded periodic waveform

Manuscript approved May 23, 1988.
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A perfect periodic code (PPC) is defined to be a periodic code whose autocorrelation function
(ACF) has zero sidelobes and whose amplitude is uniform (maximum power efficiency = 1); i.e.,
la 1 l = la 2 = ... = l aN-1, where | I denotes the magnitude. An asymptotically perfect

periodic code (APPC) has the property that as N - oo the code's ACF has zero sidelobes and its
power efficiency is one. Known PPCs and APPCs and their properties are discussed in more detail in
Refs. 1 and 2.

In this report, we introduce a new class of PPC and APPC that we call reciprocal codes because
they can be derived through a linear transformation of the known codes. We also examine the
reciprocal code's aperiodic performance. This a motivated by the tendency that good periodic codes
yield good aperiodic codes as exemplified by the Frank code [3].

II. PERIODIC CODES

Define a code word a such that a is a row vector of length N and

a = (a0, a,, a2 , - . aN-l), (1)

where an, n = 0, 1, 2 ... , N - 1 are the elements of the code word. A periodic code is one that
repeats the code word a indefinitely. Hence if ap, is the periodic code associated with a, then

ap, = aoaoa... (2)

where the symbol o denotes concatenation.

On reception, a periodic code is match filtered with its code word. The output of the correla-
tion process is also periodic with a period N. Hence, the matched response repeats every N unit time
delays as does the sidelobe response.

We form an N x N circulant matrix A, based on each of the possible unit time delays of the
received code:

ao a 1 a2 aN-l

aNl1 ao al ... aN-2

A aN-2 aN-l a0 ... aN-3 . (3)

a I a2 a3 ao

Note that the inner product between the first row and the m + ith row, m = 0, 1, ... , N - 1 row
is equal to the output of the correlation process at the mth unit time delay of any period. Also the
inner product of the m 1th and the m2th row is equal to the inner product of the m3th and the m4th
row if m -M2 = M3 - M4 . In fact if rm is denoted to be the inner product of the first and
m + lth rows, then

2
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AAt =

ro
r l

r2

r, r2 ... rN2-
ro r0 ... rN-2

r l ro ... * rN -3

* * *rNl_ rN-2 rN 3 . .. r

(4)

where t denotes the matrix conjugate transpose and * denotes the complex conjugate. Here the diago-
nal elements are identical and equal to the matched response, and the off-diagonal elements are asso-
ciated with the N - 1 sidelobe responses. The code word a is constrained such that

Ila112 = 1, (5)

where 11 11 denotes the vector magnitude. We call a periodic code "perfect" if all the code elements
have equal magnitude and all of the sidelobe responses are zero. The first condition implies the code
is 100% power efficient or

Ia 1 ; n = 0, 1, 2, ... , N- 1.N'

Zero sidelobe response implies that

(6)

(7)AAt = I

where I is the N x N identity matrix. The code word associated with a PPC is called the perfect
periodic code word.

III. GENERATORS FOR PERFECT CODES

A circulant matrix, as given by the form seen in Eq. (3), has the property that it can be written
as [4]

A = B AB*, (8)

where B is an N x N matrix given by

B = I

1 1

1 WNM

lWM1 WN

I WeN-I)M

1 ...

w2M
WN ...

w4M
WN ...

. . .

. . .

We(-1)2M

1

WYN - I)M

W2(N-1)M

**. WNN 1)(N-I)M

(9)
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with

WN = e-

M is an integer that is relatively prime to N, j = -, and A is a N x N diagonal matrix. We
refer to B as the generalized Butler matrix. This matrix has the properties that

BT = B, BB* = I, B3 = B*, B4 = I, (10)

where T denotes the matrix transpose.

From Eq. (8), a circulant matrix has the property that its eigenvectors are equal to the columns
of the Butler matrix and its eigenvalues are the diagonal elements of A. Furthermore, the diagonal
elements of the matrix A are defined as the row vector

X = (XO,1 , -, XN-I) (11)

and are related to the code word a,

a =-X B*. (12)

Hence, the code word is obtained directly from the diagonal elements of A through the matrix
transform B. In a sense, the X vector generates the a code word. We call X the generating vector
and A the generating matrix of the periodic code.

For a PPC, AA' = I, which implies that

(B A B*) (B A B*)' = I (13)

or

B A At B* = I (14)

or

AA' = 1. (15)

Hence, a necessary condition for a PPC is that the magnitudes of the diagonal elements of the gen-
erating matrix must equal one. Also, a necessary and sufficient condition for a periodic code to have
zero sidelobes is given by Eq. (15).

Now consider two distinct periodic code words a1 and a2 and their respective circulant matrices,
AI and A2. Then from the preceding discussion,

A 1 = B Al B*; A 2 = B A2 B* (16)

4
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where Al and A2 are the generating matrices of a1 and a2, respectively. Now

Al A2 = B Al B* B A2 B*, (17)

= B Al A2 B*.

Set A = AI A2 and observe that A is also a circulant matrix whose first row a is found by circularly
convolving a1 with a2 or a = a *c a2, where *c denotes the circular convolution operation. Now if
the magnitudes of the diagonal elements of Al and A2 are equal to one, then the magnitudes of the
diagonal elements of A = A1 A2 are also one. Hence the new periodic code word a must have zero
sidelobes because of the necessary and sufficient condition given by Eq. (15). As a result, if two
known periodic codes have zero sidelobes, we have a mechanism for generating another periodic code
with zero sidelobes. In fact, the new codes themselves can be used to generate other zero sidelobe
periodic codes by using the same methodology.

If the two periodic codes a1 and a2 are perfect the circularly convolved code a1 *c a2 must have
zero sidelobes but not necessarily equal magnitude for all code elements. However, in Section IV, a
new code is introduced (which is found by circularly convolving two known PPCs) that not only has
zero sidelobes but has equal magnitude for all code elements. Hence the new derived code is also
perfect.

IV. RECIPROCAL PERFECT CODES

If a is a PPC word, then (1/1N) X is also a PPC word, where X is the generating vector given
by Eq. (12). The proof is fairly straightforward in that we demonstrate that the periodic code has
constant amplitude and zero sidelobes.

Define the periodic code word

a'= 1 * (18)

where X is the generating vector of a PPC. Hence, the elements of a' all have the same magnitude.
We now prove that the sidelobe level is zero.

Associated with a' is a circulant matrix A' that has a form given by Eq. (3). Hence this matrix
can be decomposed as A' = B A'B*, where A' is a diagonal matrix. To show that the sidelobes of
a' are zero, we need only show that A' A" = I or that the associated generating vector X' has ele-
ments that are all on the unit circle. This is accomplished by solving for X* in Eq. (12) and substi-
tuting this into Eq. (18) or

a' = (Ka*) B*. (19)

Hence it follows that V' = <K a*, which implies that all the elements of X' are on the unit circle.

Finally, since the complex conjugate of a PPC word is also a PPC word, it follows that
(1/4K) X is a PPC word. In essence for a PPC, the relationship given by Eq. (12) implies that the
generating points on the unit circle (given by the Xn) are mapped into code elements on the 1 lK cir-

5
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cle. Furthermore, a reciprocal code is yielded by normalizing the generating points. From Eq. (18)
and above it follows that if a reciprocal PPC word is defined as

a' = aB, (20)

then this is also a PPC word.

Note that since the matrix B depends on M, many reciprocal codes can be generated. Since M
is relatively prime to N, the number of reciprocal codes is equal to the number of relatively prime
integers less than N, which can be found by using Euler's ¢-function [5]. However, all of these
codes for M > 1 are merely a reordering of the elements of the M = 1 code. In fact, it is elemen-
tary to show that if a', a,, ... , a' 1I are the elements of the reciprocal code for M = 1, then
a Mn mod N' n = 0, 1, ... , N - 1 are the elements of the reciprocal codes for any M relatively
prime to N. For example, if a' = (a', a', a', a3, a') and M = 2, then (a6, a', a', a', a') is also
a reciprocal PPC. For M = 3, (a', a', a', a4, a') is a reciprocal PPC. Hence, all reciprocal codes
are related through elementary permutation transformations.

V. RECIPROCAL ASYMPTOTIC PERIODIC PERFECT CODES

An APPC is a periodic code that becomes perfect as the number of code elements N in the
periodic code word approaches infinity. For finite N either the sidelobe level is nonzero and/or the
power efficiency is less than 100% for these codes. However, as N - oo, either the sidelobe level is
zero or approaches zero and/or the power efficiency is 100% or approaches 100%.

Examples of codes that are APPCs are the shift register codes, the primitive root code, and the
quadratic residue code. All of these codes are polyphase and thus 100% efficient and have a relative
sidelobe level (voltage) equal to -1/N for all time delays. (Note that the relative sidelobe level is
measured with respect to the peak or match point, which is normalized to one.) Hence, as N - 0o
the relative sidelobe level goes to zero and the aforementioned codes become perfect.

It turns out that the reciprocal of these codes (see Eq. (20)) are also APPCs. In this case, the
reciprocal codes have zero sidelobes for any N and a percent efficiency that approaches 100% as
N- o.

Let e equal the constant relative sidelobes level of a given APPC. Then by definition

AA' (21)

or

AA = (1-E)I + e IIT, (22)

where

I = I111 ... )T. (23)

6
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Since A is a circulant matrix,
yields

it has the form given by Eq. (8), which when substituted into Eq. (22)

B A B* B A' B* = (1-E) I + e 11T (24)

or

A A' = (1-e) I + E(B* 1) (B I)T. (25)

It can be shown that

B 1 = (K, 0,0 . . . , o)T,

(B 1) (B 1)T =

N 0... 0
0 0... 0

If X0, XI,-.. ,\XN-1 are the diagonal elements of A, it follows from Eqs. (25) and (27) that

(28))I l = 1 + e (N - 1)

and

I Xk 1 2 = 1 - e k = 1,2,... ,N- 1.

If e = - 1/N, which is the relative sidelobe level of the binary psuedorandom, primitive root, and
quadrative residue codes, then it is found that

(30)I02 N= 1

and

12 = 1 + 1
N' k = 1,2,... ,N- 1.

Now if a is polyphase, the reciprocal code must have zero sidelobes because of the necessary and suf-
ficient condition given by Eq. (15). The efficiency of the new code is calculated by averaging over
the squared magnitudes (or powers) of the code elements and dividing by the maximum squared mag-
nitude (or power) of the code elements. From Eqs. (30) and (31), it is seen that the efficiency of the
reciprocal APPC can be written as

7
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1~~~~~~~~~
± + (N-1) 1 + I

N2 N 
eff = N- 2N

N Li I]

or

effx 1 - I

Hence from Eq. (33), as N - oo the percent efficiency goes to 100%. For example for N = 10, the
reciprocal code is 91% efficient; for N = 100, the reciprocal code is 99% efficient.

VI. APERIODIC PROPERTIES

A. Reciprocal PPCs

Two known PPCs are the Frank code [3] and the Lewis and Kretschmer P4 [6,7] code. The
Frank code word is formed by concatenating the rows of the conjugated Butler matrix:

(34)

Note that the code word length of a Frank code is always a squared integer: N2 . The elements of the
Frank code can be rewritten simply as

an = - W Ln [n /N], = 0, i, ... , N2 - 1,an-N ,- ,,-,
where [ ] is the least integer function (the greatest integer less than or equal to the argument).

From Eq. (20), the kth element of a reciprocal PPC is given by

I N2 -1

N2 n=0
k =0, 1, ... ,N2 -1.

If L = M, Appendix A shows that

I= WN Mk[k/NI WMk 2

Note that the reciprocal of the Frank code is merely the element-by-element product of the original
Frank code and the diagonal of the B matrix. Note also, for L * M, that the resultant reciprocal
code elements are permutations of the code elements given by Eq. (37) as discussed in Section IV.

8
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The Lewis and Kretschmer P4 code has code word elements having the form

an = 1WN(1 /2) Ln (n +N mod2) +nl, n = 0, 1 2, ... , N -1 (38)

where N is the code word length, I is an arbitrary integer, L is an integer relatively prime to N, and
N mod 2 equals 0 if N is even, or 1 if N is odd. Again by using Eq. (20), the kth element of a
reciprocal PPC is found to be

1 N-iak = - F WV"2) =( mo) + n(I+Mk) k=0, 1,.. ., N - 1.
n =O

(39)

If L = M, Appendix B shows that

= 1 W (1/2)Mk(k + 1) - ki . e' t , (40)

where k is constant phase (given in Appendix B). The reciprocal P4 code is seen to be merely the
complex conjugate of the original P4 code with a constant phase rotation. Hence, the B matrix
transformation of the P4 code is isomorphic.

We now introduce a PPC that is found by circularly convolving a Frank code with a P4 code of
length N2 where N must be odd. Let aF and ap4 be the code words associated with the Frank and P4
codes. The new PPC is then given by

a = (aF *c ap4) * (41)

where the 1IN normalizes the code's power to one. The proof that the convolved Frank-P4 is perfect
is given in Appendix C. It can be shown that the elements of the convolved Frank-P4 are given by

1 N 2 - I
an N nO

W-m[m/N] + (112)L(n-m)(n-M+1) + (n-m)l
-N 2

n = 0, 1, 2,... N2 - 1.

Figure 2 is a plot of the aperiodic ACF and the ambiguity function (see the next subsection for the
definition) of the convolved Frank-P4 code. It is observed that the sidelobe level of the convolved
Frank-P4 code is comparable to the P4 code, and like the P4 or Frank codes, it is Doppler tolerant.

The reciprocal PPC elements are given by

I= I '-
N 2

n=0

N2- 1
d W-mm IN] + (1/2) L(n -m)(n -m +1) + (n -m)l + Mnk

m =0

k = 0, 1, 2, ... N2 -1. (43)

9
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Li C

CD Sr 

Ln
CD S

c_' I 

40 0 ! 7 l 60 2C0 240

(a)

O

(b)

Fig. 2 - (a) Aperiodic ACF of the convolved
Frank-P4 code; (b) ambiguity function, N = 121

B. Reciprocal Asymptotically Perfect Periodic Codes

In this subsection, the reciprocal codes associated with two codes that have a periodic autocorre-
lation function with all of the sidelobes equal to - 1 are discussed (see Ref. 2 for more details).
These codes are baser. on Number Theory considerations and are called the primitive root and qua-
dratic residue codes. Some examples of the ACFs and ambiguity functions of these codes are
presented.

We first define the discrete ambiguity function (DAF). Let fdT be the product of the target
Doppler frequency and the code time duration, and let a be a code word defined by Eq. (1). Note
that T is equal to the time length of a. The DAF A (mfd T) is defined as

10
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N *- j(2irlNnf 
I E an +m e /N)nfdT 1 2 m = 0, 1, N - 1

n =0

A(m,fdT) = an an m ej( 2,NflfdTI2 m = -1, -2, , - (N - 1) (44)
n =0

0, Iml AN

where the index m is associated with the range cells (or time delays) in the sidelobes. The ACF is
simply equal to A (m ,0).

1. Primitive Root Code

The N code words of the primitive root code [2] are defined as

an = - WNR 1 , n = 0, 1, 2, . ,N - 1 (45)

where N + 1 must be a prime number and ca is a primitive root modulo N + 1 [5]. The reciprocal
code is found by using Eq. (20) or

N -1I
aPk = - E W§+j WNMk", k = 0, 1, ... , N - 1. (46)

Nn =O

Figures 3 and 4, respectively, are example plots of the aperiodic ACFs of the primitive root code and
its reciprocal for N = 100, M = 1, and a = 2 (N + 1 = 101 is a prime number). Note that the
sidelobe structure and level are very similar for the two codes. Figures 5 and 6, respectively, show
the DAF of the primitive root code and its reciprocal. For the DAF plots, we have normalized the
time delay axis to T. Hence for m = N - 1, normalized delay equals 1. From these figures, again
note the similar sidelobe structure. Also, it is observed that these codes have ambiguity functions that
are similar to those of the binary shift register codes.

2. Quadratic Residue Code

For this code, which is binary, the Legrendre symbol 15] (q Ip) is introduced. This symbol is
defined for all q that are not divisible by p; it is equal to 1 if q is a quadratic residue of p; other-
wise, it is equal to -1. Note that q is a quadratic residue of p if the congruence

z2 = q modp (47)

has a solution.

With these preliminaries, the code is defined as

a n = 0, 11 ... N - 1 (48)

11
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0 100 150
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Fig. 3 - Aperiodic ACF of the primitive root code,
p = 101, a = 2

I I I I 1'1l l1ll I J I.1 . I ! .1

I. 

I 1 1. -I ,, 

T T-
o 50

. , -. -___,. ._. 4 - - . j

I 100 150 200

SAMPLE NUMBER

Fig. 4 - Aperiodic ACF of the reciprocal primitive
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Fig. 5 - Ambiguity function of the primitive root code,
p = 101, a = 2
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Fig. 6 - Ambiguity function of the reciprocal primitive root code,
p = 101, a = 2
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where N is prime number of the form: 4m -1. We define (0/N) = 1. For example, for N = 11,
the code word a is given by

a = I (1, 1, - 1,1,1,1, - 1, - 1, - 1,1, - 1).
N/KN'

(49)

The reciprocal code is found by using Eq. (18) or

1 N-Iak=- 
n =0

n ,
LN 

(50)

Figures 7 and 8, respectively, are example plots of the aperiodic ACFs of the quadratic residue code
and its reciprocal for N = 103 and M = 1. Again, the sidelobe structure and levels of the two codes
are similar. This is also observed of the DAFs of the two codes shown in Figs. 9 and 10. Again,
note that the ambiguity functions are similar to those of the binary shift register codes.

0 50 00 150

SAMPLE NUMBER
200

Fig. 7 - Aperiodic ACF of the quadratic
residue code, p = 103
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A
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2Li

I 100 150
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Fig. 8 - Aperiodic ACF of the reciprocal quadratic
residue code, p = 103
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Fig. 9 - Ambiguity function of the quadratic residue code, p = 103

5-

Fig. 10 - Ambiguity function of the reciprocal quadratic
residue code, p = 103
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VII. SUMMARY

In this report, new waveforms are described that have been recently investigated for use in radar
systems. Of particular interest are digital coded polyphase waveforms having very low sidelobes after
processing. Low sidelobes are desired to prevent the masking of weak targets in the sidelobes of
strong targets or clutter returns. Processing a polyphase waveform consists of digital matched filter-
ing whereby the output of this filtering is the ACF of the waveform.

New PPCs are investigated and presented whose ACFs have zero sidelobes and whose amplitude
is uniform (maximum power efficiency = 1). In addition, new APPCs, which have the property that
as the number of elements in the code goes to infinity the code's ACF has zero sidelobes and its
power efficiency is one, are discussed. These codes were called reciprocal codes because they can be
derived through the Butler matrix transformation of the known codes. It is shown that the reciprocal
code of a PPC is also a PPC and that the reciprocal code of an APPC is also an APPC. Also, we
have presented a new PPC that results from circularly convolving the Frank code with an odd square
ordered Lewis and Kretschmer P4 code.

We have also examined the reciprocal code's aperiodic performance. This is motivated by the
tendency of good periodic codes to yield good aperiodic codes. It is found that many of the reciprocal
codes have aperiodic sidelobe levels similar to the low sidelobe levels exhibited by well-known codes
(such as the binary shift register codes).
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Appendix A

RECIPROCAL FRANK CODE

The code elements of the reciprocal Frank code (M = L) are given by

N2
- I

i wn-Mn[nl/N] WMnk

n =O

k =0,1,... ,N2 - 1.

Set n = n1N + n2, k = kjN + k2 where nj, n2 , kj, k2 = 0, 1, ... , N - 1. Equation (Al) then
can be rewritten as

(A2)aI = 1 N- N- -(n n2i+ ki n, + ki n2)M n2k2
N2 E E N2

1 1 k2 N-1 N- -m(n, - kl)(n2 - k2) WMn2k 2
- WN ~ , F WN N 2

N 2 N n, = 0 n2 = 0

Set n ' = n 1 -k 1 , n2 = n 2 -k 2 . Thus1 2~~~~~~~N 1k

a = 1 - Mk k2 Mk2
akN 2 WN N,

N k ~MMn',k2

, WN2
n,' =- k

N WN 1 2

n =k2

However, because of the periodicity of WN,

N-i - k2 -Mn II N-i-Mn In 2 =~

E WN =2
n2' = -2n2'= 0

-Mn' n _

WN =

[N, if n' = 0

l0, otherwise '

Hence, it follows that Eq. (A3) reduces to

ak = - I _Mki k2 vk 2

NN N'

Now

WMk2 _ eM(kiN + k2)
2

- 2Mki k2N2 - N2
- N N2
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(A3)

(A4)

(A5)

(A6)
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or

kN 2 -2Mk, k2 W2(A7)
N2 WN N2 

Thus

aI = I Mkl k2 WMk
2

k= - WN N2 ' (A8)

= I WwMk[k N] WMk2
N N 
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Appendix B

RECIPROCAL P4 CODE

The code elements of the reciprocal P4 code are given by the expression

1 N-I
ak = N, WNI/2) Mn(n + N mod2) + (I + Mk)n (Bi)

Nn =0

Now

-Mn(n + N mod2) + (1 + Mk)n = -M [(n + k)2 -k2 + nN mod 2] + ln. (B2)
2 2

Set m = n + k so that

1 ~~N-I+ka= - w(1/2) Mk2 , Wk$/2)M[m2 + mN mod2 - kN mod2] + 1(m -k) (B3)
m=k

or

aj' = I w-w(1/2) Mk(k + N mod2) -Ik . N w 14/2) Mn(m +N mod2) + Mn(
N m =0

Note that the summation term in Eq. (B4) is independent of k. In fact, it can be shown [B1] that the
magnitude of this summation term equals NW. Thus if we set

= arg t~ £ w(1/ 2) Mn(m + N mod2) + 1ni (B5)

then

a 1w(1/2) Mk(k + N mod2)-Ik jo (B6)
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Appendix C

THE CONVOLVED FRANK-P4 CODE

In this appendix, it is shown that the circularly convolved Frank-P4 code is perfect. The new
PPC is given by

a = (aF *c ap4) I
N 

(Cl)

where aF and ap4 are Frank and P4 code words, respectively. In addition N must be odd. We prove
the a is perfect by showing that the reciprocal of a, denoted by Rec [a), is perfect. Hence, if Rec [a]
is perfect, then a is perfect (see Section IV).

Now Recta) is simply

Rec [a] = Rec aFl x Rectap4l ' N, (C2)

where x denotes the product of the corresponding elements of Rec [a} and Rec tap41. For example,

(bo,bl,b2,b3 ) X (c 0 ,c1 ,c 2,c3) = (b0c0,bjcj,b 2c2,b3 c3). (C3)

It is shown in Appendixes A and B that

Rec ta l = (j WwMk[k/N]WMk2, k = 0,1,... N2-I

and for a P4 code of length N 2 ,

Rectap4l = WN2(1/2) Mk(k + 1) - Ik eiOl, k = 0, 1, ,.. , N2 - 1.

Hence, from Eq. (C2)

Rectal = |f-1 WN-Mk[k/N] W(11/2 )Mk(k + 1) - (m + I)k ei4'1, k = 0, 1,..., N2 - 1. (C6)

It is shown in Ref. C1 that aF x ap4 is a perfect code. Note that the form of Rec [al is the same as

aF x ap4 . Hence Rec tal is a PPC, from which it follows that a also is a PPC.
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